List of formulas - Core (Paper 1 and Paper 3) This list of formulas will be included on page 2 of Paper 1 and Paper 3. Area, A, of triangle, base b, height h. $A = \frac{1}{2}bh$ Area, A, of circle of radius r. $A = \pi r^2$ Circumference, C, of circle of radius r. $C = 2\pi r$ Curved surface area, A, of cylinder of radius r, height h. $A = 2\pi rh$ Curved surface area, A, of cone of radius r, sloping edge l. $A = \pi r l$ Surface area, A, of sphere of radius r. $A = 4\pi r^2$ Volume, V, of prism, cross-sectional area A, length l. V = Al Volume, V, of pyramid, base area A, height h. $V = \frac{1}{3}Ah$ Volume, V, of cylinder of radius r, height h. Volume, V, of cone of radius r, height h. $V = \frac{1}{3}\pi r^2 h$ $V = \frac{4}{3}\pi r^3$ Volume, V, of sphere of radius r. ## List of formulas - Extended (Paper 2 and Paper 4) This list of formulas will be included on page 2 of Paper 2 and Paper 4. Area, A, of triangle, base b, height h. $A = \frac{1}{2}bh$ Area, A, of circle of radius r. $A = \pi r^2$ Circumference, C, of circle of radius r. $C = 2\pi r$ Curved surface area, A, of cylinder of radius r, height h. $A = 2\pi rh$ Curved surface area, A, of cone of radius r, sloping edge l. $A = \pi r l$ Surface area, A, of sphere of radius r. $A = 4\pi r^2$ Volume, V, of prism, cross-sectional area A, length l. V = Al Volume, V, of pyramid, base area A, height h. $V = \frac{1}{3}Ah$ Volume, V, of cylinder of radius r, height h. $V = \pi r^2 h$ Volume, V, of cone of radius r, height h. $V = \frac{1}{3}\pi r^2 h$ Volume, V, of sphere of radius r. $V = \frac{4}{3}\pi r^3$ For the equation $ax^2 + bx + c = 0$, where $a \neq 0$ $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$ For the triangle shown, $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$ $$a^2 = b^2 + c^2 - 2bc\cos A$$ Area = $$\frac{1}{2}ab\sin C$$